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a b s t r a c t

A simple model that brings together well-established thermo-mechanical models of plas-
ticity with those of martensitic phase transformation into a single thermodynamic frame-
work is proposed. The presentation is in one space dimension, but the framework is general
so that the model may be extended to higher dimensions. The model is used to study recent
experiments on the a() � martensitic phase transformation of pure iron under dynamic,
shear-dominant loading conditions. It is shown that the model fitted to established ther-
modynamic data and selected experiments is able to reproduce the experimental observa-
tions in a wide range of loading rates ranging from quasistatic to 104 s�1 as well as a wide
range of phenomena ranging including overall rate hardening and thermal softening. In
doing so, the model also provides new insight into the a() � phase transformation in
iron.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The mechanical properties of pure iron have been
extensively studied in the past decades mostly in the con-
text of its response at high strain-rates and pressures (see
for example Follansbee, 1989; Jia et al., 2000; Klepaczcko,
1969; Mason and Worswick, 2001; Nicolazo and Leroy,
2002; Ostwaldt et al., 1997; Watson, 1970; Weston,
1992). The high pressure is applied either in a quasi-static
way using a diamond anvil press, or using shock wave for
example in plate-impact experiments of a very short dura-
tion (Clifton and Klopp, 1985; Murr and Esquivel, 2004;
Rosenberg et al., 1980). Since the shock wave techniques
are more accessible than the quasi-static experiments, a
major part of the literature reports results obtained using
shock experiments (Bancroft et al., 1956; Kalantar et al.,
2005; Millett et al., 1997; Ostwaldt et al., 1997; Sano
et al., 2003; Yaakobi et al., 2005).

One of the main points of interest is the existence of an
allotropic a (BCC) () e (HCP) phase transition in this
material (Ahrens et al., 2002). This phase transformation,
discovered by Bancroft et al. (1956), is known to be revers-
ible, and occurs at large pressures, starting at 13 GPa and
completing around 23 GPa in high pressure compression
experiments. While much of the literature considered
hydrostatic pressure as the trigger for the phase transfor-
mation, Jones and Graham (1968) pointed out the role of
shear that is inherent in high pressure experiments (see
also direct measurements by Millett et al. (1997)). So,
recent work has focused on the role of shear stresses in
determining the critical pressure for the onset of the phase
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transformation. Specifically, Von Barge and Boehler (1990)
have shown that shear stresses in the pressure transmit-
ting medium systematically affect the transformation pres-
sure and hysteresis loop observed upon unloading. Further,
atomistic calculations have shown the significant contribu-
tion of the shear strain, even of modest magnitude, to the a
() e transition (Caspersen et al., 2004; Lew et al., 2006).

Still, the experimental literature on direct observations of
the phase transition, or on the role of shear on its occur-
rence, is still scarce (Kalantar et al., 2005; Sano et al.,
2003). For example, real-time diffraction experiments like
those of Kalantar et al. (2005), who confirmed the exis-
tence of the phase transition, do not address the role of
shear in the phase transformation process.

Rittel et al. (2006) conducted a comprehensive series of
dynamic shear experiments on pure iron using the shear-
compression specimen (SCS) in a split Hopkinson (Kolsky)
pressure bar. Due to the reversibility of the phenomenon,
those authors could not provide a direct evidence of phase
transformation, but several indirect observations sup-
ported the likelihood of the claim. Specifically, it was
observed that at very high strain rates (of the order of
8000 s�1), pure iron would exhibit a negative strain-hard-
ening response from the onset of yielding. Further, the
measured value Taylor–Quinney factor (Taylor and
Quinney, 1934) (which describes the amount of plastic
work that is converted to heat) would exceed unity
thereby suggesting that some latent heat was injected into
the system.

In this paper, we develop a simple model that combines
martensitic phase transformations with plasticity, and uses
it to study the experiments of Rittel et al. (2006). The
model builds on the formulation of rate-dependent ther-
moplasticity proposed by Rosakis et al. (2000) and that of
martensitic phase transformations by Sadjadpour and
Bhattacharya (2007). We introduce internal variables to
describe the phase transformation and plasticity, place
them on a consistent thermodynamic setting and prescribe
appropriate evolution laws – stick slip style for the phase
transformation and Johnson–Cook for the plasticity. We
then specialize the model to a homogenous, adiabatic,
constant strain rate setting as is appropriate for the
experimental setting. We fit the model to well-known
thermodynamic properties of iron, as well as selected
experimental observations, and show that the model is
capable of capturing the entire range of experimental
observations. While the development of such a model is
not conclusive in establishing that allotropic phase transi-
tion actually occurs in iron as a result of shear loading, it
nevertheless adds to the growing evidence establishing
its feasibility.

Various authors have studied the coupling between
plasticity and martensitic phase transformation. Much of
this work is motivated by transformation induced plastic-
ity (TRIP) in steels where a non-transforming ferritic
matrix contains transforming inclusions and the transfor-
mation in the transforming grains leads to plastic deforma-
tion in both the grains and the surrounding matrix (e.g.
Fischer et al., 2000; Cherkaoui et al., 2000; Turteltaub
and Suiker, 2005; Leblond et al., 1989; Leblond, 1989;
Levitas et al., 1998). This work seeks to understand the
nature of the plastic deformation, as well its effect on over-
all properties. There is also an emerging literature how
martensitic laths contribute ductile fracture (Shanthraj
and Zikry, 2013), and the interplay of plasticity and phase
transformations in shape-memory alloys (Richards et al.,
2013). These do not address the a–� transformation in iron.
Barton et al. (2005) developed a continuum model (in a
crystal plasticity type setting) for this transformation and
used it to study shock-induced transformation and texture
evolution. Similarly, Caspersen et al. (Caspersen et al.,
2004; Lew et al., 2006) developed a multiscale model for
this phenomena. However these models are quite involved.
In contrast, the model we present is limited in scope, but
simple. Yet, it retains enough physics to enable us to ana-
lyze the shear-dominant experiments described above
and to provide insights into the transformation and the
thermomechanical coupling.

The paper is organized as follows. Section 2 introduces
the model and describes its thermodynamic setting. In Sec-
tion 3 we fit the model to experimental observations and
then study the response of the material under a number
of strains-controlled tests. We conclude in Section 4 with
a brief discussion.
2. A thermo-mechanical model

In this section we develop and discuss our phenomeno-
logical constitutive model within a continuum thermody-
namic framework. The model builds on the formulation
of rate-dependent thermoplasticity proposed by Rosakis
et al. (2000) and martensitic phase transformations by
Sadjadpour and Bhattacharya (2007).
2.1. Kinematics

We work in the one dimensional setting. We denote by
uðx; tÞ the displacement at particle x at time t and by eðx; tÞ
the strain. We assume that the strain can be additively
decomposed into elastic, transformation and plastic
strains:

eðx; tÞ ¼ eeðx; tÞ þ kðx; tÞemðx; tÞ þ epðx; tÞ; ð1Þ

where ee is the elastic strain, k is the volume fraction of
martensite, em is the transformation strain associated with
the martensite and ep is the plastic strain. Note that we are
in the coarse-grained setting on a length scale of multiple
grains so that we do not resolve the details of the martens-
itic microstructure and grains. Thus, kðx; tÞ is the volume
fraction averaged over a representative volume element
(RVE) associated with the particle x at time t while em is
the average transformation strain of every subregion of
martensite in the RVE. Consequently, they satisfy the
constraints

k 2 ½0;1� and em 2 ½e�m; eþm�; ð2Þ

where the parameter e�m < 0 < eþ0 depends on the crystal-
lography and texture of the material. Further, the total
transformation strain of the RVE is kem (Sadjadpour and
Bhattacharya, 2007).
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We also introduce an internal variable fðx; tÞ that
describes the state of plastic work hardening at point x at
time t.

2.2. Balance laws

We assume that the usual balance laws hold. In local
form, the balance of linear momentum and energy may
be stated as

q€u ¼ r;x; ð3Þ

_e ¼ �q;x þ r þ r _e; ð4Þ

where q is the (referential) mass per unit length, r is the
(Piola–Kirchhoff) stress, e denotes the internal energy den-
sity, q the heat flux and r the radiative heating. Also, super-
posed dots denote differentiation with respect to time
while the subscript comma denotes differentiation with
respect to the variables that follow. We also use the local
form of the second law of thermodynamics (Clausius–
Duhem inequality),

� _W � g _hþ r _e� qh;x
h

P 0; ð5Þ

where W ¼ e� hg is the Helmholtz free energy density, g
the entropy density and h the (absolute) temperature.

2.3. Constitutive relations

We assume that the Helmholtz free energy density
depends on the strain, the temperature and the internal
variables (k, em; ep and f):

W ¼Wðe; k; em; ep; f; hÞ: ð6Þ

Specifically, we assume

W ¼ E
2
ðe� ep � kemÞ2 þ kxðhÞ � cp h ln

h
h0

� �
þWpðfÞ; ð7Þ

where E is the elastic modulus, x is the difference in chem-
ical energy between the austenite and the martensite, cp is
the heat capacity and h0 is the reference (absolute)
temperature.

The first term is the elastic energy. In this work, we
have assumed for simplicity that the elastic modulus is
equal in both the austenite and the martensite, and that
it remains unchanged with stress. This is justified for the
small stresses that we encounter in this work, and should
be replaced with a phase-aware equation of state if higher
stresses are present. The second term is the chemical
energy of phase transformation defined as the excess free
energy due to the transformation from austenite to mar-
tensite. Therefore, this term is proportional to the volume
fraction k. Further, this contribution is primarily entropic
and is related to the latent heat. Therefore, we further
assume that

xðhÞ ¼ L
hcr
ðh� hcrÞ; ð8Þ

where L is the latent heat of transformation and hcr is the
thermodynamic transformation temperature. The third
term is the contribution due to specific heat, and this is
again taken to be equal in both the martensite and austen-
ite for simplicity. The final term Wp is the stored energy of
plastic work. We will assume a specific form in the sequel.

Notice that we have neglected ordinary thermal expan-
sion, the temperature dependance of the stored energy of
plastic work and the direct energetic interaction between
martensitic phase transitions and plasticity. We comment
on these later.

We substitute the Helmholtz free energy density rela-
tion (7) in the second law and use arguments similar to
those of Coleman and Noll (1963) to obtain

r ¼ @W
@e
¼ Eðe� ep � kemÞ; ð9Þ

g ¼ � @W
@h
¼ �k

L
hcr
þ cp 1þ ln

h
h0

� �� �
: ð10Þ

We assume that the heat flux is given by Fourier Law:

q ¼ �Kh;x; ð11Þ

where K is thermal conductivity (assumed to be equal in
both the austenite and the martensite).

It remains to specify evolution laws for the internal
variables. To do so, we identify the driving forces

dm :¼ � @W
@em
¼ kr; ð12Þ

dk :¼ � @W
@k
¼ rem �x; ð13Þ

dp :¼ � @W
@ep
¼ r; ð14Þ

df :¼ � @W
@f
¼ � @Wp

@f
ð15Þ

and postulate kinetic relations

_em :¼ fmðdm; e; k; em; ep; f; hÞ; ð17Þ

_k ¼ fkðdk; e; k; em; ep; f; hÞ; ð18Þ

_ep :¼ fpðdp; e; k; em; ep; f; hÞ; ð19Þ

_f :¼ ffðdf; e; k; em; ep; f; hÞ: ð20Þ

Note that we have assumed for now that the kinetic rela-
tions can depend explicitly on the state of the system.
The second law requires that the kinetic relations satisfy

fmdm þ fkdk þ fpdp þ ffdf P 0 ð21Þ

and this places restrictions on the kinetic relations.

2.3.1. Phase transformation
We assume that the martensite reorients itself very fast

so that the evolution of em is instantaneous. Therefore, we
assume following (Sadjadpour and Bhattacharya, 2007)
that

em ¼
e�m r < 0;
eþm r > 0:

�
ð22Þ
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Further, we assume that the kinetic relation fk describing
the evolution of the martensite volume fraction k is taken
to be the following:

_k ¼
_kþ ð1þ ðdk � dþk Þ

�1Þ
�1

p
dk > dþk and k < 1;

_k� ð1þ ðd�k � dkÞ�1Þ
�1

p dk < d�k and k > 0;
0 otherwise:

8>>><
>>>:

ð23Þ

where _k�; d�k ; p are material parameters. This relation is
shown in Fig. 1. Note that this law is rate-independent
with critical force for small rates, but becomes rate depen-
dent at high rates. In brief, the rate-independence with
critical force reflects a combination of metastability and
pinning by defects. The rate-dependent nature of the law
at large driving forces is based on the observations that
suggest the phase boundaries require an unboundedly
increasing driving force for the propagation speeds to
reach towards some sound speed.

2.3.2. Plasticity
We now turn to fp and ff and follow Rosakis et al.

(2000). In light of (9) and the fact that Wp ¼Wpðf; hÞ, we
can write

fp ¼ fpðr; f; hÞ; f f ¼ ffðr; f; hÞ: ð24Þ

We assume that

fpðr; f; hÞ ¼ signðrÞffðr; f; hÞ: ð25Þ

Note that this is equivalent to _f ¼ j _epj or identifying the
plastic hardening variable with the accumulated plastic
strain (Rosakis et al., 2000). We now assume that the func-
tion ff may be specified in terms of a yield stress sðf; hÞ > 0
and non-decreasing hardening function H that satisfies
HðxÞ ¼ 0 for all x 6 0:

ff ¼ H
jrj

sðf; hÞ � 1
� �

: ð26Þ

We further assume strain hardening and thermal
softening:

s;f P 0; s;h 6 0: ð27Þ

We further assume that the hardening function H satisfies

H0ðxÞ > 0 8x P 0: ð28Þ

When jrjP s, we can invert (26) to write after using (20)
-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

d
λ
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λ
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λ. /λ
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Fig. 1. The kinetic relation between _k and the driving force dk .
jrj ¼ sðf; hÞ H�1ð _fÞ þ 1
� �

: ð29Þ

For the specific forms of f and H, we adapt the widely used
Johnson and Cook (1985) flow rule as modified by Vural
et al. (2003) to include both the quasistatic and dynamics
regimes:

jrj ¼ r0 þ Bfnð Þ 1 þ C ln
_fp

_f0

 ! !
1 � D expðh�Þm

1 � D

� �
;

ð30Þ

where

h� ¼
h � hr

hr � hm

� �
; ð31Þ

C ¼ Cq þ Cd � Cq

2
1 þ tanh ln

_f
_fH

 ! !
; ð32Þ

_f0 ¼ _fq
0 þ

_fd
0 � _fq

0

2
1 þ tanh ln

_f
_fH

 ! !
ð33Þ

and r0; B; n; Cq; Cd; _fq; _fd; _fH; D; m, hr and hm are mate-
rial parameters. hr is the reference temperature at which
r0 is measured and hm is the melting temperature of the
material; further notice that the relations (32) and (33)
smoothly transitions from the quasistatic values Cq; _fq

0

and the dynamic values Cd; _fd
0 at the critical strain rate _fH.

Finally, we turn to the stored energy of plastic work Wp.
Note that the rate of plastic working is r _ep, some of which
is stored at a rate _Wp while the rest is converted to heat.
Therefore, we define the Taylor–Quinney factor or the
instantaneous or differential fraction of plastic work1 that
is converted to heat (Taylor and Quinney, 1934; Farren
and Taylor, 1925) to be

b ¼ 1�
_Wp

r _ep
: ð34Þ

Since the Clausius–Duhem inequality (5) must hold for all,
processes including adiabatic processes (q ¼ 0) with no
phase transition ( _k ¼ 0), it follows that r _ep � _Wp P 0 so
that 0 6 b 6 1.

Recalling (7), (25) and (30), and also assuming that the
stress is larger than the yield stress, we assume

b ¼ 1�
@Wp

@f
_f

jrj _f
¼ 1�

@Wp

@f ðfÞ
jrjðf; _f; hÞ

¼ bðf; _f; hÞ: ð35Þ

We specify Wp using b, but only for a particular setting
described below.

2.4. Homogenous, adiabatic, constant strain-rate process

We seek to apply this model to experiments conducted
with shear-compression specimens in a split Hopkinson
1 We note that our definition differs from one used in experimental
works as the ratio of the rate of change of thermal energy to the rate of
plastic working. These are equivalent in the absence of phase transforma-
tions, but differ in the presence of phase transformations as we describe in
detail in Section 2.5.
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(Kolsky) bar. This experiment probes the material in the
gage section in a homogeneous, adiabatic, constant
strain-rate process. So we specialize our model to this set-
ting. Since the process is homogeneous and adiabatic,
q ¼ r ¼ 0. Further, since the strain-rate is constant, the
strain is monotone increasing. We make the stronger
assumption that the plastic strain is also monotone so that
we identify the plastic strain with the accumulated plastic
strain,

f ¼ ep; _f ¼ _ep: ð36Þ

For a homogenous, adiabatic and constant strain-rate pro-
cess, Rosakis et al. (2000) showed that one can express the
fraction of plastic work converted to heat as simply a func-
tion of strain and strain-rate: b ¼ bðep; _epÞ. Therefore, we
make the final constitutive assumption motivated by their
experiments:

b ¼ b0

_ep

_ep
þ

� �2

1 þ b1 ep ðeH

p � epÞ
� �

; ð37Þ

where b0; b1; eþp and eH

p are parameters. Note that b
increases with increasing strain-rate, and initially
increases but subsequently decreases with strain.

With b defined, we now turn to solving the governing
equation. With the assumption of constant strain-rate,
the balance of momentum (3), is automatically satisfied.
So, it only remains to examine the energy balance (4).
Recalling that q ¼ r ¼ 0 and substituting for the internal
energy in terms of the Helmholtz free energy and entropy,
this equation becomes

_W þ h _gþ _hg ¼ r _e: ð38Þ

Using the constitutive assumption (7) for W to expand _W
and recalling the definitions (9), (10) and the driving
forces, we obtain

cp
_h ¼ _kh

L
hcr
þ dm _em þ dk

_kþ dp _ep þ df
_f: ð39Þ

We recall the expressions for dp; df in (14), (15) as well as
the definition of b in (34), to rewrite sum of the final two
terms as brep. Finally, we neglect the kinetic dissipation
of martensitic transformation, dm _em þ dk

_k, which is typi-
cally small compared to the latent heat. We obtain,

cp
_h ¼ h _k

L
hcr
þ br _ep: ð40Þ

In summary, for a homogenous, adiabatic, constant
strain-rate process with sufficiently high stresses so that
plasticity is active, we solve (9), (23), (30), and (40).

2.5. Apparent Taylor–Quinney factor

We conclude this section with a comment on the
Taylor–Quinney factor b defined in (34). We note here that
this factor can not be measured directly in experiment by
measuring the temperature and using the energy balance
due to the presence of the latent heat during phase trans-
formation. Following common experimental practice (e.g.,
Rosakis et al., 2000; Rittel et al., 2006), we define a new
variable, the apparent Taylor–Quinney factor as
bapp ¼
cp

_h
r _ep

: ð41Þ

Using (40), we see that

bapp ¼ bþ L _kh
hcrr _ep

: ð42Þ

Thus, in the presence of phase transformation, the apparent
Taylor–Quinney factor differs from the theoretical one due
to the addition of latent heat. Thus, even if 0 6 b 6 1 as dis-
cussed earlier, bapp can exceed unity in the presence of a
phase transformation. Therefore bapp > 1 can be interpreted
as the presence of phase transition.

3. Illustration

In this section, we demonstrate that our model is consis-
tent with the observed stress–strain and thermal response
of pure iron for a wide range of strain rates. We fit the
model to selected tests, and then hold the parameters fixed
during the rest of the section. We find that the model is able
to capture thermal softening, rate hardening, and observed
trends in the apparent Taylor–Quinney factor.

3.1. Experiment

The experimental procedure is presented in detail in
Rittel et al. (2006), and is only briefly outlined here. The
quasistatic experimental results carried out on a servo-
hydraulic MTS machine under displacement control, and
high strain rate compressive testings are carried out using
a split Hopkinson (Kolsky) pressure bar. A shear-compres-
sion specimen (Rittel et al., 2002) – a cylinder in which
two diametrically opposed slots are machined at an angle
with respect to the longitudinal axis to the test gage section
– was used. This specimen enables testing up to large strains
of Oð1Þ over a large range of strain rates in a state of domi-
nant shear. However, the state of stress is not pure shear,
and therefore the recorded load–displacement data is pre-
sented as (Mises) equivalent stress and strain. The surface
temperature of the gauge section was measured in situ
using a liquid nitrogen cooled mercuric cadmium telluride
(MCT) infrared detector covering an area of 1 mm2. The
simultaneous determination of the equivalent stress–strain
and temperature in the gauge section was later processed to
determine the apparent Taylor–Quinney factor bapp.

3.2. Parameters

Consistent with typical experiments on pure iron (see
for example Chen and Ahrens, 1996), we consider the fol-
lowing parameter values:

q ¼ 7870 kg=m3; E ¼ 190 GPa;

cp ¼ 3:5 MJ=K=m3; and L ¼ �1:07� 108 J=m3:

In all the simulations ambient temperature is assumed
to be equal to 295 K. We further assume that em is equal
to zero for the a phase and equal to 0.5 for the e phase.
Critical temperature hcr is assumed to be equal to 800 �K.
We also assume the following kinetic coefficients:
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_kþ ¼ � _k� ¼ 1 s�1; dþk ¼ �d�k ¼ 2:9� 108 J=m3; p ¼ 2:

We now turn to fitting the Johnson–Cook flow model.
The first three parameters, r0;B and n, are determined
from quasistatic tests. Fig. 2 shows results of the experi-
mental observations and the model fit to the following
parameters:

r0 ¼ 32:6MPa; B ¼ 430MPa; n ¼ 0:1:

We turn to a combination of quasistatic and dynamic tests
(at moderate strain rates to fit the next set of coefficients
Cq; Cd; _fq

0;
_fd

0;
_fH that determine the role of strain rate.

Fig. 3 shows results of experimental observation and the
model fit to the following parameters:

_fq
0 ¼ 4� 10�5 s�1; _fd

0 ¼ 355 s�1; Cq ¼ :00008;

C2 ¼ :385; _fH ¼ 100 s�1:

Finally, we fit the coefficients that determine the tempera-
ture dependance. Fig. 4 shows results of experimental
observation and the model fit to the following parameters:

m ¼ �9; D ¼ �4; hr ¼ 295K; hm ¼ 1811 K:

Finally, we fit the parameters for b defined in (37). We
do so by trial and error to be

b0 ¼ 0:5; _eþp ¼ 1 s�1; b1 ¼ 0:5; eH

p ¼ 1: ð43Þ

Fig. 5 shows b as a function of strain e for three different
strain rates.
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3.3. Strain-controlled tests

We now demonstrate the stress–strain response of pure
iron for a wide range of strain rates. We are interested in
strains of the order of tens of percents and specifically
the behavior at yield and beyond. Therefore, we ignore
the elastic strain. In other words, we assume that the
imposed strain is a sum of transformation and plastic
strains. For each simulation we compare our results with
experimental observations of Rittel et al. (2006) (see
Figs. 6–13).

Fig. 6 shows the quasi-static response, while Figs. 7–13
show the response at progressively increasing strain rate
from 2800 to 10,000 s�1. In each figure, we show both
the results of the model and the experimental observa-
tions, and note good agreement between them. First, we
1

Strain rate =7000 (1/s)
Strain rate =8000 (1/s)
Strain rate =9000 (1/s)

ating heat as a function of strain and strain rate.
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Fig. 8. Stress–strain response of pure iron for a dynamic test, _e ¼ 3500 1
s
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Fig. 9. Stress–strain response of pure iron for a dynamic test, _e ¼ 5800 1
s
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Fig. 10. Stress–strain response of pure iron for a dynamic test,
_e ¼ 6300 1
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see that the yield strength increases with strain rate as
observed. Second, we observe that at strain rates
8400 s�1 and above, we have an increasing amount of
thermal softening.

However, there are two aspects that we do not capture.
Recall that we neglect the elastic strain in the model and
therefore, we do not capture the initial rise. Similarly, we
do not capture the initial stress rise and the subsequent
stress oscillations which are well-known artifacts of a split
Hopkinson pressure bar.

We elaborate on the results in Fig. 14. We plot the
stress, the temperature, the volume fraction of the
martensite and the apparent Taylor–Quinney factor as a
function of strain for five different strain rates. Since the
strain rates are constant in each test, we may regard the
horizontal axes as the (suitably scaled) time. We see that
there is virtually no temperature increase in the material
for the quasistatic test. This is qualitatively consistent with
the observed phenomena in experiments that suggest at
low strain rates material has enough time to diffuse the
generated heat into the surroundings. At higher strain
rates, however, the material does not have enough time
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Fig. 14. Theoretical calculation of the progression of phase transforma-
tion, stress, temperature and apparent Taylor–Quinney factor for different
strain rate experiments.
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to conduct out the generated heat and thus temperature of
the body increases as deformation proceeds. Further, we
also see that the amount of phase transformation increases
at intermediate rates and the resulting latent adds to the
increasing temperature. All of this is captured by the
model. The increasing temperature gives rise to thermal
softening at higher strain rates. Further, the increasing
temperature and thermal softening at the higher strain
rates results in an arrest in the phase transformation
finally, we note that it can indeed exceed unity at the high-
est rate consistent with the observations.
4. Conclusion

In this paper, we have presented a new model that com-
bines martensitic phase transformations with plasticity,
and applied it to study the experiments of Rittel et al.
(2006) on pure iron. The model builds on the formulation
of rate-dependent thermoplasticity proposed by Rosakis
et al. (2000) and that of martensitic phase transformations
by Sadjadpour and Bhattacharya (2007). We introduce
internal variables to describe the phase transformation
and plasticity, place them on a consistent thermodynamic
framework and prescribe appropriate evolution laws –
stick slip model for the phase transformation and John-
son–Cook model for the plasticity. We then specialize the
model to a homogenous, adiabatic, constant-strain rate
setting as is appropriate for the high-strain rate experi-
ments. We have shown that the model is capable of
describing the entire range of experimental observations.

The first significance of the work presented here is that
it provides additional support for the presence of a() e
phase transformation under shear. The experiments of
Rittel et al. (2006) provided indirect evidence based on
thermal measurements and microstructural characteriza-
tion that the phase transformation can occur at extremely
low levels of stress (of the order of a GPa) in comparison to
transformation stress of 13 GPa under shock loading condi-
tions of uniaxial strain (Barker and Hollenbach, 1974) and
laser shock experiments (Kalantar et al., 2005). This sug-
gests that the presence of shear can lower the transforma-
tion stress significantly, which is consistent with the
suggestion made in recent multiscale model proposed for
pure iron (Caspersen et al., 2004; Lew et al., 2006). The fact
that the current model can describe the rich observations
of these experiments supports the presence of phase tran-
sitions in these experiments, even though it is not conclu-
sive. Further work with the shear compression specimen
(SCS) at high strain rates with in situ diffraction is needed
to conclusively assert that the phase transformation is
indeed possible in iron at low pressures.

The second significance of the work presented here is
that it presents a consistent thermodynamic framework
for combining phase transformations and plasticity at high
strain-rates. The model could be improved in various ways.
First, the model contains no explicit energetic coupling
between the phase transformation and plasticity. This is
well-known that martensitic c() a transformations pro-
mote plasticity. Further, Richards et al. (2013) recently
showed that intergranular coupling also promotes a direct
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coupling. This could be included by replacing Wp in (7)
with a term like Whðf; k; emÞ. However, this makes various
expressions more complicated and parameter fitting more
difficult. Second, the model is macroscopic and contains no
microstructural or texture information. As the strain
becomes large, the texture can evolve and the constitutive
functions can change. Finally, the stored energy of plastic
work is specified by the Taylor–Quinney factor b limited
to an adiabatic, constant strain-rate setting. Unfortunately
we do not have enough independent experimental infor-
mation at isothermal or other stress states at this time.
An important aspect of the combined phase transformation
and plasticity in pure iron is the hysteresis observed during
loading–unloading in shock wave experiments (Barker and
Hollenbach, 1974). A future direction of this modeling
would be to explore the behavior of pure iron under shock
loading and the observed hysteresis.
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