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ABSTRACT 

The ability to simulate shear bands evolution in thick-walled-cylinder (TWC) 

experiments is required to understand their spontaneous formation and propagation. 

Recently we presented experiments on electro-magnetically collapsing metallic 

cylinders [1]. Here we present numerical simulations that reproduce the experimental 

results for multiple shear bands in those TWCôs. We present a detailed study of the 

initiation and propagation of the shear bands and their mutual interactions, which 

replicates many of the experimental observations. We investigate the influence of 

initial perturbations and pressure history on the initiation and final stages of the 

process using an energy-based failure model which incorporates a positive feedback 

mechanism. The numerical model is calibrated for four different materials to 

reconstruct the number of shear bands and their experimentally determined 

distribution. The results indicate that the number of shear bands is related to 

deformation micromechanisms operating in the material, such as twinning and 

martensitic transformations, which may hold back and eventually stall the shear bands 

evolution. The numerical simulations provide a reliable quantitative description of the 

shear bands distribution and spacing, thus paving the way for future predictive work 

of this failure mode. 
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1. INTRODUCTION  

Modeling adiabatic shear banding (ASB) has been a standing issue for the past few 

decades. As shear localization is an important and often dominant failure mode at 

high strain rates, as well as a precursor to catastrophic failure, a reliable predictive 

capability is highly desirable. Such a modeling capability should faithfully represent 

the mechanics and the physics of the dynamic material behavior.  ASB formation in a 

dynamically loaded metal is traditionally viewed as a structural and/or material 

instability. The strength of a material is considered to be controlled by two competing 

mechanisms: hardening, such as strain and strain-rate hardening, and softening such 

as thermal [2] and microstructure-related softening [3-5]. The classical approach of 

Zener and Hollomon [2], which was recently reported [6] to have been presented 

earlier by Kravz-Tarnavskii [7] and Davidenkov and Mirolubov [8], relates the 

initiation of adiabatic shear localization to the dominance of the thermal softening 

over the hardening mechanisms. Namely, under high rate deformation, the thermal 

softening results in a loss of strength leading to a feedback mechanism between the 

plastic work and the consequent decrease in flow stress. In the last decade, an 

alternative process was proposed for ASB formation [3-5], identifying microstructural 

evolution (e.g. dynamic recrystallization) as the dominant softening mechanism. In 

these works, the dynamic stored energy of cold work was identified as the driving 

force for shear localization, which is, in fact, preceded and triggered by dynamic 

recrystallization [3]. 

For each approach, a constitutive model that could capture the formation and 

evolution of adiabatic shear banding has to include a localization criterion and a 

positive feedback mechanism, due to the mutual relation between plastic work and 

material softening (either thermal or microstuctural). In addition, such a model should 
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express the dependence on material thermo-mechanical and/or microstructural 

properties, in order to account for the susceptibility of materials to shear banding, and 

the different ASB characteristics in various materials as observed experimentally. 

We recently presented an experimental study on the spontaneous evolution of 

adiabatic shear bands in collapsing Thick Walled Cylinders (TWC) [1, 9]. As detailed 

and explained in [9], the examination of spontaneous adiabatic shear bands highlights 

the inherent susceptibility of a material to adiabatic shear banding, without any 

geometrical constraint related to stress concentrations. Following our experimental 

work, as well as other works on explosively driven TWCs [10-14], we aim at 

modeling the formation and evolution of multiple adiabatic shear bands in TWCs, 

with the inherent complexity related to the mutual interactions between the shear 

bands during their growth. The number of shear bands and their spatial distribution, as 

well as the conditions prevailing at their onset of formation, as characterized in [9], 

provide a large database to select a proper constitutive model together with a failure 

criterion, for different materials. 

Numerical modeling of spontaneous shear band evolution, in TWC tests, is pursued in 

the literature through either 1D or 2D/3D modeling of shear bands. The 1D modeling 

follows different strength and failure models, in order to predict the spacing between 

shear bands (e.g. [15]-[18]). 2D/3D numerical simulations are aimed at reproducing 

the formation and evolution of ASBôs, and their interactions, as observed in 

experiments, (see e.g. [19-20]). 

Examining 1D modeling of shear bands, Grady [15], Wright & Ockendon [16] and 

Molinari [17] performed a perturbation analysis for the shear instability, using 

constitutive equations which incorporate strain and/or strain rate hardening and 

thermal softening. This approach ties the mathematics of perturbations with the 
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physical material instability phenomena, suggesting that shear bands evolve at a 

spacing which is determined by minimum energy considerations, matching a 

dominant wave number, issued from the perturbation calculation. Grady [15] 

accounted for a viscous constitutive equation and linear thermal softening. Later 

works by Wright and Ockendon [16] and by Molinari [17] addressed this issue with a 

similar approach, by extending the materialôs constitutive law to include rate 

dependency [16], and strain hardening [17]. The outcome of these works consists of 

analytical expressions for the spacing between shear bands. The ability of these 

models to predict shear band spacing was examined experimentally in several works 

with dynamically collapsed thick walled cylinders. Xue et al. [10] found a good 

agreement for 304L stainless steel. On the other hand, significant discrepancies 

between the experimental results and the modelsô predictions were found for CP-

Titanium and Ti-6Al-4V [12]. Recently, Lovinger et al. [1] found significant 

discrepancies between predictions from these models and their results from electro-

magnetically (EM) driven TWC tests for seven different materials. It was suggested 

that the limited ability of these analytical 1D models, to predict the measured spacing, 

seems to coincide with earlier work in the literature (e.g [3]-[5]), indicating that 

thermal softening is not the dominant factor responsible for the onset of localization.  

Daridon et al. [18] examined shear band spacing for more complex constitutive 

models. Using a 1D perturbation model with periodic boundary conditions, they 

studied the spacing between shear bands in Titanium and HY100 steel. Three material 

models were examined: the Johnson-Cook (JC) model [21], a power law model and 

the MTS (Mechanical Threshold) model [22]. The results were compared with the 

experimental TWC spacing results for Titanium [12], showing that while the JC 

model predicted much larger spacings (by an order of magnitude), the MTS model 
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predicted the experimental results quite well. The work of Daridon et al. [18] follows 

an approach which addresses the initiation of shear bands through the flow stress 

("strength") model, unlike other works, as shown in what follows, which search to 

define a failure or damage model.  

Medyanik et al. [23] defined a new criterion for shear band formation, based on 

experimental observations of dynamic recrystallization (DRX) in the shear bands.  

The onset of localization is associated with a critical temperature for recrystallization 

which is of the order of 0.4-0.5 Tm (melting temperature) of the material. The authors 

presented simulations using two constitutive models: one for the bulk material and 

one to describe the material inside the shear band. The shear band criterion signals the 

shift from one model to the other and it is based on a critical DRX temperature with 

strain rate dependency. The JC constitutive model was used in the simulations for the 

bulk material, and a viscous fluid model for the material inside the shear band. The 

simulations agree well with the band width, their velocity and the measured 

temperature rise in the bands [23]. Though good agreement was achieved, the model 

is restricted to a predefined perturbation as determined by a notch and the forced 

localization. Additional questions arise regarding the physical meaning of two distinct 

criteria, before and after ASB formation, and the fact that it was shown that DRX is 

not linked to a specific temperature rise [5].  

Considering now 2D and 3D numerical simulations which take into account also the 

spatial behavior of the multiple shear bands during their evolution, Arias and 

Belytschko [19] suggested a two-scale model to simulate ASBôs using the extended 

Finite Element (FE) method (XFEM). The shear bands are accounted for by using a 

local partition of unity. When material instability is detected, the FE temperature and 

displacement fields are enriched with a fine scale function which is able to model the 
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high gradients within the shear band. They implemented this model to reproduce a 

large variety of shear band experiments and satisfactory agreements were achieved for 

many of them. For the TWC experiment, the model demonstrates the formation of 

multiple ASBôs, yet it only shows qualitative resemblance to experimental results. 

Rabczuk and Samaneigo [20] modeled 3D shear band evolution in TWC experiments. 

They treat the shear bands as discontinuities, neglecting their width. The localization 

criterion is defined by the material instability, shifting at this point to a non-

continuous space, while the discontinuity is modeled and controlled by a cohesive 

law. The 3D TWC simulations show the formation of multiple adiabatic shear bands 

only in a qualitative manner. These 2D and 3D numerical works [24-25] account for 

the discontinuity of the shear bandsô space, but they lack a physical model for shear 

band evolution and do not describe well the physics of the multiple shear bandsô 

formation. 

Firstenberg et al. [24] used a different failure approach to account for shear band 

formation. The model defines a strain-based damage parameter, 10 ¢¢D , which 

evolves through the following relations: 
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The flow stress decrease provides the positive feedback needed to cause shear 

localization. In [24], the model was used to simulate perforation tests, showing good 

agreement with the experimental results and reproducing failure characteristics. The 

damage mechanism effectively corresponds to the thermal/microstructure softening. 

Lovinger and Partom [25] used this model in 2D numerical simulations to simulate 

multiple adiabatic shear bands and obtained a fair comparison with explosively driven 

TWC test results. This model was further examined by Lovinger et al. [9] to 

reproduce experimental results of EM driven (electromagnetically collapsed) TWC 

made of 304L stainless steel. An empirical cumulative distribution function (ECDF) 

was used as a quantitative measure to compare the shear band distribution in the 

simulations with the experiments. The simulations of the collapsing cylinder showed 

good agreement with the experimental results for both global behaviour and shear 

band distribution. However, the failure criterion used in these works is 

phenomenological and not physically based, thus no extrapolation from one material 

to the other could be done. 

Numerical simulations of multiple shear bands in TWCs were also reported by Yang 

et al [13-14], using a mechanical-thermal coupling module available on ANSYS/LS-

DYNA software. The numerical simulations demonstrate satisfactory results as far as 

the global behavior of shear band evolution and mutual interactions between shear 

bands are concerned. Yet, no quantitative comparison with the experimental results 

was presented for spacing or shear band distribution. Yang et al. [13] used the JC 

constitutive equation that incorporates strain, strain rate hardening and thermal 

softening. It is not clear how localization was obtained, because material softening at 

the initial stage was not intense enough using the bulk softening properties. This issue 

was examined in the past in our numerical simulations, showing that the bulk thermal 
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softening decreases the strength only very slightly, while significant softening is 

needed to reach localization. Yang et al. [14] also examined the influence of 

precipitated particles or inclusions on the shear band distribution. They showed that 

adding heterogeneities to the model can change the directionality of the shear bands, 

e.g. causing all shear bands to evolve mainly in one direction (clockwise of counter-

clockwise) rather than evolving equally in both directions. 

Following the work of Rittel et al. [3], who proposed a new criterion based on part of 

the total strain energy density, a numerical implementation of the strain energy 

density as a failure criterion was carried out by Dolinski et al. [26] and by Noam et al. 

[27]. With this model, the two works resulted in very good agreement between the 2D 

simulations and test results of impacted laboratory specimens, explosively loaded 

plates and ballistic perforation, all involving ASB-related failure. The failure criterion 

which was based on experimental observations was justified analytically in the recent 

work of Dolinski et al. [28]. 

Following the successful ability of this physically-based criterion to reproduce ASBs 

in forced shear scenarios ([26]-[28]), we pursued its application to model the 

formation and evolution of spontaneous multiple ASBs in collapsing thick-walled 

cylinders. This benchmark problem can be considered as highly challenging and 

discriminating, when compared to the analysis of a single shear band evolving in a 

solid. The experimental results reported by Lovinger et al. [1] for several materials 

were available to test the performance of the numerical simulations. 

The experimental work in [1] involved the collapse of thick walled cylinders using a 

pulsed current generator (PCG) to create the electro-magnetic driving forces. The 

TWC in these tests come to a stop at the end of the test and the shear band distribution 

is extracted by post mortem analysis of the sectioned specimen. The specimen design 
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enables to stop the TWC at different stages of collapse, thus allowing for examination 

of the shear band distribution, at different stages of its evolution. 

In this work, we present 2D numerical simulations of collapsing thick walled 

cylinders, using the strain energy density criterion. We first present a detailed study of 

a typical collapsing cylinder. In the case study, we follow the evolution of shear bands 

by examining the evolution in time of the different thermodynamic variables. This 

enables extended comprehension of the complex phenomena, matching much of the 

physics observed in tests. We further study different numerical and material 

sensitivities of the model to assess the reliability of the results. Finally, with the model 

calibrated for four different materials, we present a satisfactory quantitative 

comparison for the number of shear bands, drawing conclusions on what presumably 

controls the number of shear bands and their spacing, in collapsing thick-walled 

cylinders. 

 

2. NUMERICAL MODELLING  

2.1 The numerical model 

For the simulations carried-out in this work, we used a home-made 2D Lagrangian 

hydrocode which follows a finite difference explicit scheme. J2-plasticity is 

implemented in Wilkins' radial-return method, assuming isotropic material hardening 

[29]. Large strain formulation is adopted throughout this work. Simulation results 

using this code were presented in previous works [24, 25], and [9]. 

The model uses slab symmetry (with plain strain conditions) and consists of three 

sandwiched cylinders, copper-specimen-copper. A boundary pressure, exerted on the 

external copper cylinder represents the driving force. A typical measured current 

signal and the calculated pressure (P) from the current density (J in Fig. 1b) are shown 
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in Figure 1. For sensitivity checks of the model, detailed further in this work, we used 

a simplified boundary condition of a half sine wave (in time), with a peak pressure of 

25 Kbar and duration of 2.2 ɛs. The model configuration and boundary conditions are 

shown in Fig. 1. 

For all the simulated materials, we used a Mie-Gruneisen Equation-of-state (EOS), 

with the linear Hugoniot relation. The strength of the intact material was represented 

either by a Johnson-Cook (JC) model [21] or by a Steinberg-Cochran-Guinan (SCG) 

model [30]. The material parameters are listed in Table 1, and they refer to the actual 

material properties used in our tests [1]. 

 

 

 

 

 

 

 

Figure 1 ï The numerical model: (a) model configuration, (b) generic load-history, (c) 

measured current-flow in one of the EM-TWC tests, (d) the calculated magnetic 

pressure from the current-flow history. 
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where A, B, n, m and C are the material parameters, 0e#is a reference strain-rate, taken 

to be 1

0 sec1 -=e# , T0 is the initial temperature (room temperature in this case) and Tm 

the melting temperature. The shear modulus, G, used with this model is constant (see 

Table 1). 

The Steinberg-Cochran-Guinan (SCG) model incorporates terms of strain hardening, 

pressure hardening and thermal softening and is defined by: 
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where ASCG, BSCG, n, and b are the material parameters, ei is the pre-strain, ɖ is the 

compressibility defined as (1-r/ro), P in the pressure [GPa] and T is the temperature 

[Ko]. For this model, The elastic shear modulus is a function G(P,T): 

))300(/1( 3/1
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where ASCG, BSCG, are the same as in Eq. (2), and G0 is the shear modulus at room 

temperature and atmospheric pressure.  

 

 

  



 12 

Table 1 ï Material properties and model parameters. 

JC model 

ɟ0 

[gr/cc] 

C0 

[Km/sec] 

S ũ 

G 

[GPa] 

A 

[GPa] 

B 

[GPa] 

C N m 

Tm 

[K 0] 

Ss304L 7.90 4.57 1.48 1.75 71.5 0.1 1.072 0.05 0.34 1.0 1356 

Cu* 8.92 3.93 1.51 1.98 44.0 0.09 0.292 0.025 0.31 1.09  

* Cu refers both to the copper specimens and to the inner and outer copper cylinders used in all tests 

** C 0, S and G are the Mie-Gruneisen EOS parameters. 

SCG 

model 

ɟ0 

[gr/cc] 

C0 

[Km/sec] 

S ũ 

G0 

[GPa] 

ASCG 

[1/GPa] 

BSCG 

[1/Ko] 

b n 

Y0 

[GPa] 

Ymax
(*)  

[GPa] 

CP-Ti 4.52 4.59 1.26 1.52 43.4 1.15 6.22e-2 210 0.1 0.85 1.45 

Ti6Al4V 4.42 5.13 1.26 1.52 41.9 1.15 6.44e-2 12 0.1 1.33 2.12 

MgAM50 1.78 4.50 1.26 1.52 16.5 10.3 5.09e-2 1100 0.12 0.19 0.48 

Al -A356 1.66 5.14 1.69 2.38 70.0 EPP model: Y= 0.3 GPa 

(*) Y max is an upper limit of the stain hardening contribution of the model: Y0(1+b(e+ei))n<Ymax 

 

2.2  The failure damage model to describe shear band evolution 

We use a shear failure damage model based on a strain energy density criterion. The 

model, incorporating a positive feedback mechanism, effectively corresponds to the 

thermal/microstructure softening, which is essential to model the formation of shear 

localization. We refer to W, the specific plastic strain energy density, as: 

 

 

Where sij are the stress tensor components, epij are the plastic strain components and r 

is the material density. 

We then define two parameters, Wi and Wf, which are graphically described in  

Figure 2. Wi is the specific plastic strain energy density until the onset of shear 
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initiation and Wf is the plastic strain energy density at full localization when the flow 

stress in the band decreases to zero. 

We define a damage parameter 10 ¢¢D  evolving by: 

fi
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D is used to decrease the flow stress (Y) through: 
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Eq. (8) provides the positive feedback needed to cause shear localization. As W 

increases (with the growth of plastic strains), the flow stress decreases, softening the 

material and promoting additional plastic strains, and so on. The material behavior is 

described schematically in terms of a stress-strain curve in Figure 2. Note that the 

energy criterion incorporates the physics of a process leading to shear band initiation 

and evolution rather than a threshold criterion such as a critical strain criterion. 

 

 

 

 

 

 

Figure 2 ï Constitutive model to describe shear localization: damage model based on 

strain energy density criterion. The dotted line represents the strength model behavior 

without the damage model.  
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3. RESULTS 

3.1 Case study ï Modeling the evolution of multiple ASB in a collapsing TWC  

We present here a case study in which we examine the development of different 

thermodynamic variables such as pressure, plastic strain, strain rate and velocity at 

different stages of evolution. This case demonstrates the strength of the numerical tool 

in understanding the complex phenomena involved in this dynamic localization 

problem. 

We consider a 304L thick walled stainless steel cylinder, with an outer diameter of 

5.0mm and an inner diameter of 3.5mm. The cylinder is sandwiched between 2 

copper cylinders (outer diameter 5.5mm and inner copper diameter is 3.25mm, 

respectively) and the outer boundary of the external copper is subjected to a boundary 

pressure of a half sine (shown in Figure 1b) with a peak pressure of 25Kbars and 

duration of 2.2 msec. 

The mesh is an unstructured mesh, introducing a spatial numerical perturbation to 

break the symmetry of this one-dimensional problem. The initial perturbation will be 

discussed further in detail, and will be shown that it does not influence the 

characteristics of the shear bands distribution. 

 

3.1.1 Effective plastic strains 

Figure 3 shows maps of effective plastic strains. The time duration for the collapse of 

the cylinder until it comes to a full stop is about 6 microseconds. The plastic strains at 

the inner boundary are the highest, and at t= 3.0 msec, when they reach the value of 

~0.45, fluctuations in the plastic strain are evident (see zoomed frame in  

Figure 3). 
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Figure 3 ï Shear band evolution: maps of effective plastic strains 
 

Figure 3 shows at t=3.0 ms 2D fluctuations in the plastic strain field with a general 

pattern of lines at ±45 degrees with points on the boundary with slightly higher plastic 

strains. These points serve as ñembryosò from which shear bands can evolve. The 

competitive evolution is captured, as some of the shear bands propagate to longer 

distances, and the neighboring shear bands come to earlier stop and travel shorter 

distances. Upon propagation of the shear bands, the stress is released in their vicinity, 

as strength is decreasing on the sheared surfaces, by release waves emanating from 

them. This ñshieldingò effect as referred to in [10] will be further demonstrated, in the 

section 3.2.2.  

 

3.1.2 Pressures 

The boundary pressure is exerted on the external boundary of the outer copper and 

propagates in the radial direction. Radial reverberations of the waves accelerate the 
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cylinders while the inner copper cylinder, due to the mechanical impedance 

mismatch, is accelerated faster. Thus, during the collapse, the inner boundary of the 

ss304L specimen is not in contact with the copper, creating a free surface. At 

t=~4.4msec the inner copper collapses to the center, creating a strong outgoing shock 

wave. At t=4.6ms the shock wave which emanated from the center reaches the free 

surface of the inner copper, and a release wave returns to the center, creating tension, 

and its external surface starts moving outwards. At t=4.8ms the ss304L inner boundary 

and the copper impact each other, creating pressures of the order of 5 GPa. Finally, at 

t=6ms, pressures are already of the order of the material strength and no additional 

propagation occurs. 

 

3.1.3 Velocities 

The radial velocities of the specimen during the collapse are ~200m/s. The radial 

velocity matches that of the explosively driven TWC experiments [10], yet in those 

experiments the time of collapse is about 25 ms as compared to 6 ms in our tests. This 

difference matches the geometry-scale of ~4, between the two sets of tests. The inner 

copper is moving with a higher velocity (400-700m/s), detaching from the specimen 

boundary, creating a gap between the specimen and the inner copper (with free 

surfaces). This gap is maintained for the most part of the collapse.  

The inward velocity is decreasing gradually, due to dissipation of energy by plastic 

work of the specimen itself. Before coming to a stop on the inner copper cylinder, 

these velocities slow down to ~50m/s.  
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Figure 4 ï Velocity maps :(a) at t=3 ms, (b) at t=4ms (with zoomed area),  

(c) experimental result for Ti6Al4V (from [1])  

 

When shear bands evolve, we notice higher velocities of the bulk material which is 

ñtrappedò between shear bands. This relative velocity is what causes the ñjigsawò 

displacements, noticeable in all of the experiments (for each of the materials), see the 

zoomed figure at time 4.0 ms. An example of this is shown in Figure 4, demonstrating 

this phenomenon in a Ti6Al4V collapsed specimen, as reported in [1]. At later times 

the velocity vector changes direction as the shock wave emanating from the center, 

propagates outwards, resulting in outward radial velocities.  
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3.1.5 Flow stress (strength) maps  

The maps of the flow stress (strength) provide additional insight into the evolution of 

shear bands, as the stress decreases gradually in the evolving shear bands and reduces 

to zero when a calculated cell reaches full shear (when W reaches Wf, see Eq. (8)). 

Figure 5 shows the stages of initiation, growth and interaction between shear bands. 

The fluctuations in the flow stress field observed at time 3.5ms develop for some into 

actual initiations. The two earlier initiated shear bands seen on the left hand side of 

the zoomed figure cause a ñshieldedò area, deactivating the potential initiation sites 

between them. The competitive growth of the shear bands is demonstrated in a 

comprehensive manner, following gradually the stages of propagation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 ï Shear band evolution: Flow stress maps 

at different stages of shear band evolution 
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When two developed shear bands meet, the bulk material which is trapped between 

them moves inwards (having a radial relative velocity, as shown above) causing the 

jigsaw structure at the inner boundary. At t=4.8ms the inner copper impacts the 

specimen, ñsmoothing-outò this disturbed boundary. The broadening of shear bands, 

seen at later stages, seems to be a result of weak radial tensile forces. The tensile 

opening of shear bands is evident through pore growth and coalescence in post 

mortem fractography of the specimens, as shown in [1].  

 

3.2 Sensitivity checks 

In order to establish the credibility of the numerical modeling, and its ability to be 

compared with experimental results, we conducted sensitivity checks for the load (the 

boundary pressure exerted on the external copper) and for the initial perturbations in 

the simulations. Later on we shall discuss the influence of the mesh size on our 

results. 

 

3.2.1 Boundary pressure sensitivity study 

The main purpose of this part of the study was to explore how sensitive the spatial 

distribution of shear bands is to the exact load, and if  we can pursue a quantitative 

comparison to experimental results, given the accuracy of our current-flow 

measurements. In [9], we examined the influence of the peak pressure value and 

showed that a change of 20% in the pressure, for which we achieved good agreement 

with the experimental spatial SB distribution, is very significant. We used in [9] a half 

sine load with duration of 2.2 ms (see Fig 1b) and varied the peak pressure. The 

numerical simulations showed no evolution of shear bands with the low boundary 

pressure, and a full breakup of the specimen for the high boundary pressure. We 
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concluded that we can accurately determine the peak pressure value by calibrating it 

such as to achieve the final geometry of the specimen, as measured after it is 

recovered. To further examine this conclusion, we conducted simulations with two 

loading cases, maintaining the same impulse: A peak pressure of 25 kbars for 2 msec 

and a peak pressure of 50kbar for 1 msec. The shear band distributions, shown in 

Figure 6, seem to be practically identical for the two cases. This result strongly 

suggests that the exact pressure history has a weak significance on the spatial 

distribution of shear bands, and that the total impulse driving the specimen is the main 

factor dominating the shear band distribution. This conclusion is very significant, 

since it relaxes the demands on accurate current measurements, which are difficult to 

perform in high pulsed power machines. Thus, we do not have to determine the exact 

boundary pressure in each test. Practically, we could use a single sine wave rather 

than input the entire oscillating signal and calibrate it to achieve the final geometry of 

the specimen.  

 

 

 

 

 

 

Figure 6 ï Final stage of collapse (yield maps) with different boundary pressure 

impulses: (a) 25kbar per 2 msec, (b) 50kbar per 1 msec. 
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discusses the limitations of calculating electro-magnetic forming problems with a 

magnetic boundary pressure in comparison to full MHD calculations. A 10%-15% 

difference in results was reported in [31] between the two approaches. These results 

point out that an equivalent boundary pressure could be a relatively good estimation, 

and it could be further modified to compensate for some of the missing magneto-

thermo-mechanical coupling at this stage.  

 

3.2.2 Initial perturbations  

The plane-strain geometry of a collapsing cylinder loaded by a spatially-uniform 

boundary condition is in fact a 1D problem. To achieve shear band initiation, some 

perturbation is needed to break the 1D symmetry. The initiation of shear bands is 

achieved in the simulations by numerical perturbations of the unstructured mesh we 

are using. In order to confirm that the initial perturbations do not influence the shear 

band distribution in any way, we examined systematically the influence of these 

initial perturbations. 

Figure 7 shows a comparison of two calculations which differ only in their mesh 

structure: Figure 7a shows the result using a structured polar mesh with uniform ñrays 

of cellsò and Figure 7b shows the result using the unstructured mesh. The later is able 

to adjust to the occurrence of large changes in the geometry (large deformations and 

strains) which occurs at late stages of shear band evolution with large plastic strains, 

for which we use remeshing. The use of geometrical erosion (deleting cells which 

reach a geometrical threshold) is possible at this stage but we found it as a numerical 

step which intervenes with the physics of the shear bandsô evolution. When using 

erosion, the numerically deleted cells, create new free surfaces, resulting with 

rarefaction waves emanating from them. It can be seen that when we use a perfectly 
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polar structured mesh, no shear bands initiate and we reach a perfect 1D behavior. 

With the unstructured mesh, the symmetry breaks and with perturbed fields of strain, 

velocity and pressure, initiation occurs at the inner boundary. 

 

 

 

 

 

Figure 7 ï The influence of mesh structure: (a) no shear banding in a perfectly 

structured mesh (b) shear band initiation with an unstructured-mesh  

 

The main issue we wanted to explore was whether the shear band distribution and 

spacing are influenced by the pattern of the unstructured mesh. To examine this point, 

we used the model with the structured mesh and applied perturbations of different 

amplitudes and wavelengths. The perturbations consisted of small geometrical 

changes of the inner radius of the specimen, defined by: 
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        (9) 

where A0 is the amplitude of the perturbation, n is the number of waves on the 

perimeter and t is an angle vector along the perimeter. Figure 8 shows three cases we 

examined with different number of waves: 10, 100 and 200. The amplitude A0 was 

determined at first to be of the order of the microstructure, setting A0=1mm. Using 

such amplitude caused a shear band to initiate at the peak of each wave. As the 

unstructured mesh perturbation is a numerical one, and is much smaller than the 

geometrical scale, we used eventually a value of 10-4 mm for perturbing the radius. 

The perturbed radii in Figure 10 are exaggerated just for the purpose of presentation. 

The shear band initiation and evolution is presented in Figure 10 at two different 
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times: t=3.0 ms and t=4.0 ms. The shear band distributions seem very similar for all 

cases, yet, for quantitative comparison we sketched out the shear-bands in the 

simulations and used an empirical cumulative distribution function (ECDF) [9] to 

compare them. The ECDF does not follow a particular parametric form of a 

probability function but produces a non-parametric density estimate that adapts itself 

to the data. The stair-step function simply assigns a probabiliy of 1/n to each of  the n 

observations in a sample. We use Greenwood's formula [32] for calculating lower and 

upper confidence bounds for the calculated ECDF. 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 8 ï The influence of initial perturbation on shear band distribution 

examining different wave numbers 
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and of the order of a numerical perturbation (e.g 10-10 m), this pattern has no 

observable influence on the shear band distribution itself. On the other hand, for a 

large enough perturbation, the case becomes similar to that of forced nucleation of 

shear bands, and the latter are dominant in this specific region, as exemplified in 

Figure 10.  

 

 

 

 

 

   

 

 

 

 

 

 

 

 

Figure 9 ï Influence of initial perturbation on shear band distribution examining 

different wave numbers (10, 100, 200) ï comparison of the ECDF, with lower (LCB) and 

upper (UCB) confidence boundaries. 
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points, shear bands evolved at an early stage, before other shear bands initiated at the 

inner boundary. The results, shown in Figure 10, lead to several conclusions: 

(1) The two single-cell perturbation was enough to perturb shear bands on the 

entire boundary of the specimen. 

(2) The shear bands, in the zones far from the point perturbations, evolve in a 

similar distribution as the other cases shown above: The same shear band 

distribution is achieved with the sinusoidal perturbation, the single-cell 

perturbation or the full-space unstructured mesh perturbation. This further 

establishes that the shear band distribution is a result of the physics and not a 

result of the amplitude or character of the initial perturbation. 

The much earlier propagating shear bands demonstrate very clearly the ñshielding 

effectò. We can identify three different zones: the neighboring zones at the side of a 

shear band, the zone between the two shear bands, which has enhanced shielding, and 

the far zone which is not affected by them. 

The results shown here, with single shear bands propagating much earlier, and to 

much longer distances than the rest of the specimen, can explain the phenomenon 

observed in some of the specimens. For example, in the SS304L#2 specimen (Figure 

10b), a single shear band evolved through the whole thickness, while the rest of the 

bands evolved to much shorter lengths. As discussed above, one can assume that this 

is a result of a "strong" perturbation forcing shear localization, such as a machining 

flaw.  



 26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 ïShear band evolution in a case of a structured mesh with only two ñweakò 

cells, and a comparison with results observed for  specimen SS304L#2 
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3.2.3 Mesh size influence 

The influence of mesh size in numerical modeling, using damage models, is always 

an important issue. As we use meshes with high resolutions, and a remeshing mode, 

one may expect the influence of mesh size to be small. 

In [9], using a comparable model to the one we are using in this work and a critical 

strain criterion, we presented a mesh sensitivity study of the numerical model. We 

found the mesh sensitivity, using the current model based on a strain energy criterion 

to be the same as for the strain criterion [9]. Thus, we refer to the full comparison 

conducted in [9] and state here only the main conclusions. The sensitivity check was 

conducted using two cell sizes, 5 ɛm and 10 ɛm and examined the influence of mesh 

size on the number of shear bands and on the shear band distribution.  

We found that the shear band distributions for the two resolutions are close and that 

the number of shear bands in the two cases was the same. However, when comparing 

the maximum length of the shorter shear bands, namely those which come to a stop at 

an earlier stage of evolution, the two distributions differ. In fact, the lower resolution 

calculation resulted in longer short shear bands than the higher resolution ones. This 

result indicates that for the fine resolution, the shear band velocities remain quite the 

same as for the coarser resolution, yet the shielding effect is more enhanced, causing 

the initiated shear bands to stop at shorter lengths. 

We concluded from this comparison that: 

(1) The initiation stage is not influenced significantly by the mesh size, as also shown 

by the same number of shear bands in the two cases. 

(2) The mutual interaction between shear bands is influenced by the mesh size, 

causing a higher shielding effect for the higher resolution. We believe this to be a 

result of the differences in remeshing in the two cases: when remeshing occurs 
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with smaller cells, the remapping of variables at the deformed areas on the shear 

bands maintain closer values to the maximum values obtained in the shear bands. 

When the cells are coarse, the values are more averaged-out and the influence of 

the extreme values within the shear band travel out in a slower manner. 

  

3.3 Numerical versus experimental results 

After studying the ability of the numerical simulations to capture the evolution of 

multiple adiabatic shear bands and their mutual interactions, we calibrated the energy 

model to best-fit  the experimental results for four materials: SS304L, Pure Titanium, 

Ti6Al4V and Mg-AM50. For this purpose, we examined how the model parameters 

Wi and Wf affect the shear band distribution in order to reach the best fit with the 

data. 

 

3.3.1 Calibration process 

Using a boundary pressure history of a half sine with a duration of 2.2 microseconds, 

we calibrated the maximum pressure Pmax to reach the best fit for the final measured 

geometry (cylinders radii). In order to extract the shear band results, namely their 

number and lengths, we proceeded as follows: For the experimental results we 

sketched the specimen geometry and shear bands (as detailed in [1], [9]) as obtained 

from the optical microscope pictures. For the simulation results we had to define a 

criterion for which a shear band is identified. A ñshear-band cellò is defined after full 

failure, when W=Wf is reached. From numerical considerations, we chose for the 

analysis a value close to full failure, namely a shear band is fully formed and 

identified when 90% of the maximum decrease from Wi to Wf is reached: 

 WSB (criterion in simulation) = [Wi +0.90 (Wf-Wi)].               (10) 
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The simulation parameter we used to outline the shear bands was a map of strain 

energy density, with the above criterion as a threshold for shear band initiation 

existence. 

 

3.3.2 Parametric study of Wi and Wf 

The parametric study examines the influence of each of the parameters Wi and Wf on 

the shear band distribution. The shear band distributions for SS304L with different 

values of Wi and Wf are shown in Figure 11. The distributions are shown as strength 

maps, tracking the paths of decreasing strength, and not only the shear band cells 

which reach the above threshold criterion (as we use later on in the final comparison). 

We found this to better illustrate the influence of the parameters. In the left hand 

column in Figure 11, Wf is kept constant with different values of Wi, and in the right 

hand column Wi is kept constant while Wf changes. 

 The following important conclusions can be drawn from these results: 

(1) Wi controls the length of the short shear bands 

(2) Wf controls the length of the long shear bands 

(3) The difference Wf-Wi controls the homogeneity of the distribution. When the 

difference is small (as in Fig 11b when Wi=60 kJ/Kg, Wf=80kJ/Kg), less shear 

bands evolve and they are well developed. When the difference is large, the 

distribution is more homogeneous and more shear bands are evident. This will 

be further discussed in section 4. 
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Figure 11 ï Shear band distribution in SS304L for different values of Wi and Wf  

It can also be seen that for some of the simulations, the shear bands mostly evolve in 

one direction (e.g. Wi=50 kJ/Kg, Wf=105 kJ/Kg), and in others, shear bands evolve at 

both ±450 directions. This seems to be a statistical behavior, which we observed also 

in different experiments, and not a feature to further address here.  
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